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Motion of a spherical particle in film flow
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The motion of a spherical particle suspended in gravity-driven film flow down an
inclined plane is considered in the limit of vanishing Reynolds and Bond numbers
where the free-surface deformation is infinitesimal. Taking advantage of the axially
symmetry of the boundaries of the flow with respect to the axis that is normal
to the wall and free surface and passes through the particle centre, the problem is
formulated as a system of one-dimensional integral equations for the first Fourier
coefficients of the unknown traction and velocity along the boundary contours in
a meridional plane. It is found that the particle translational velocity scaled by the
unperturbed velocity evaluated at the particle centre increases monotonically as the
particle approaches the free-surface, whereas the corresponding angular velocity of
rotation scaled by the unperturbed vorticity evaluated at the particle centre reaches
a maximum at a certain intermediate position. The free-surface velocity vector field
and deformation are displayed, the force and torque exerted on a spherical particle
adhering to the wall are tabulated, and the associated flow pattern is discussed.

1. Introduction

Particle motion in a viscous fluid has been the subject of numerous studies because
of its significance in a variety of disciplines ranging from the rheology of particulate
media, to biofluid-dynamics of blood flow, and to microfluidics transport. Though the
effect of planar and cylindrical boundaries representing confining surfaces has been
documented for several flow configurations, the simultaneous effect of a boundary
and a free-surface occurring in gravity-driven film flow remains poorly resolved. Li
& Pozrikidis (2002, 2003) performed simulations of the film flow of an idealized
two-dimensional suspension of liquid droplets and rigid particles and found that
the collective interaction leads to particle migration away from the wall and the
free-surface. Loimer, Nir & Semiat (2002) and Singh, Nir & Semiat (2006) studied
the topography of a free-surface confining a concentrated suspension in a Couette or
gravity-driven flow device and documented the effect of the particle size, concentration,
and surface tension. Most relevant is the work of Timberlake & Morris (2005) who
conducted a laboratory investigation of the film flow of a concentrated suspension
of neutrally buoyant spherical particles down an inclined plane and demonstrated
the severe rippling of the free-surface. Timberlake & Morris found that conventional
suspension models are unable to describe all features of the film flow, especially those
pertaining to the particle concentration distribution across the film thickness. The
laboratory observations have revealed a variety of flow structures and geometrical
patterns including ‘surface turbulence’ induced by particle clusters. Other authors
have considered the deformation of the film surface down an inclined wall over a
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FiGURE 1. Illustration of gravity-driven flow of a liquid film down an inclined plane in the
presence of a freely suspended or fixed spherical particle.

fabricated wall topography, irregularity, or a small particle arrested on the wall (e.g.
Blyth & Pozrikidis 2006).

In this paper, we consider the most elementary problem of particulate film flow
concerning the motion of an isolated spherical particle under conditions of Stokes
flow. The main objective is to compute the particle velocity of translation and angular
velocity of rotation in the limit of small Bond number where the surface deformation
is small and can be considered infinitesimal. Accurate computations will become
feasible by exploiting the axially symmetry of the domain of flow in order to simplify
the boundary integral representation of this inherently three-dimensional flow. The
reduction yields a system of one-dimensional integral equations for the first Fourier
coefficients of the boundary traction and free-surface velocity defined over three
boundary contours in an azimuthal plane. Numerical solutions may then be computed
accurately and efficiently by elementary numerical methods. A similar reduction has
been used previously to compute flow past solid surfaces with axisymmetric irregu-
larities in the form of a particle, a depression, or a protrusion (Pozrikidis 1994a, b,
1997, 2000; Matzen 1997; Shatz 2004). After the integral equations have been solved,
the free-surface deformation can be reconstructed to leading order with respect to
the Bond number. As a complement to the main problem of free particle motion,
the force and torque exerted on a particle adhering to the wall are computed at a
minimal cost, and the free-surface velocity field and deformation are illustrated.

2. Problem statement and formulation

We consider the steady gravity-driven flow of a liquid film down an inclined plane
wall in the presence of a suspended spherical particle of radius a that executes rigid-
body motion, as illustrated in figure 1. In the inclined system of Cartesian coordinates
depicted, the x-axis is perpendicular to the wall and passes through the particle centre,
and the y-axis is parallel to the projection of the gravitational acceleration vector
on the wall. Far from the particle, we obtain unidirectional flow with a flat surface
described by the Nusselt solution, designated by the superscript co. The far-field
velocity and pressure profiles, uy” =0, u? =0,

w _ Pgsina
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for 0 < x < h, satisfy the condition of zero velocity on the wall, zero shear stress at the
film surface, and uniform normal stress at the film surface, where p is the fluid density,
w is the fluid viscosity, g is the acceleration due to gravity, « is the plane inclination
angle, & is the film thickness, and P, is the ambient pressure. The free-surface velocity
is Uy =u(y =h)=pgsinah®/(2u).

The particle generates a disturbance flow, denoted by the superscript D, that may
be added to the unidirectional Nusselt flow to yield the total flow with velocity
u=u”+uP and pressure p=p”+ pP. Since no assumption is made regarding the
particle size, the disturbance and unpertubed flows are of the same order of magnitude.
The no-slip and no-penetration boundary conditions require u =0 over the wall and
u=V + £ x (x —x,.) over the particle surface, where V is the velocity of translation
of the particle centre, x. =(x., 0,0), and £ is the angular velocity of rotation about
x.. Kinematic compatibility over the free-surface requires u - n =0, where n is the unit
normal vector pointing into the film. In the absence of surfactants, the shear stress
is required to vanish over the free-surface, n X f x n =0, and the normal stress is
balanced by surface tension, f+n= P, + y2«, where f =0 -n is the traction, o is the
stress tensor, y is the surface tension, «,, is the mean curvature given by «,, = % V,-n,
and V; is the surface gradient.

We will assume that the surface tension is so strong that the deformation of the
free-surface from the undisturbed flat shape is infinitesimal. The formal condition is
that the Bond number, Bo = uU,/y, is sufficiently small. Describing the free-surface
as x =h[l + Bo¢(y, z)], where ¢ is a dimensionless shape function, inserting into
the above free-surface kinematic and dynamic conditions, shifting the location of
the boundary conditions to the undeformed free-surface, and linearizing with respect
to Bo, we find that, to zeroth order, the x velocity component and the y and z
components of the disturbance traction are zero at x =h. The kinematic condition
replaces the usual dynamic condition requiring that the normal component of the
traction be balanced by the capillary force due to surface tension.

The Reynolds number written with respect to the particle size is assumed to be
so small that the motion of the fluid is governed by the equations of Stokes flow
written here for the disturbance flow, —Vp? + uV?u? =0, and V-u” =0. The body
force due to gravity has been absorbed in the parabolic velocity profile and linear
pressure profile of the unidirectional Nusselt flow. To compute the solution, we use the
boundary integral formulation for Stokes flow and express the disturbance velocity
in terms of integrals over the wall, W, the film surface F, and the particle surface, P:

1 1 1
D _ _ D L D
u"(xo) = 8Tcuy(x0’ f.P) 8Tcuy(x0’ SO WF)+ 8159(x0’u ,F), (2.2)

where the point x( lies in the fluid. We have introduced the single- and double-layer
potentials of Stokes flow defined over a generic surface, D:

S i(x0, f. D) = //I)ﬁ(x)Gij(x, x0)dS(x),

(2.3)
70,0 D)= [ wx)Ta(x. xohmu(x)dS ),
D
where dS is a differential surface area
Sii  Xix; XiXix
Gij(x, x0) = 2 + =55 Tijelx, xo) = —6- 4. (24)
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are the free-space Green’s function and associated stress tensors, X =x — xo, r = |X|,
and §;; is Kronecker’s delta (e.g. Pozrikidis 1992). Note that the integral representation
(2.2) involves the total traction over the particle surface and the disturbance traction
over the wall and film surface. To formulate the total traction, we have used the
reciprocal identity for the unperturbed parabolic flow over the particle volume. Over
the free-surface located at x =k, the unit normal vector is in the —x-direction, the x
velocity component is zero, and the double-layer potential takes the form

. uy X +uyy+uz
Zi(x0,u, F) = 6x//F [ —xoP + 32 +22]5/2(x—x0)j dS(x)

262// Uy X + Uy (0 — 09 co8P) + u,00sin
o (824 02+ 0 —2000c0s )32

(x —x0);dS(x), (2.5)

where X =h — xq, ¢ is the meridional angle, » = ¢ — ¢, and o is the distance from the
x-axis defined in figure 1. The associated cylindrical polar components are

D, . B . A x
Dy |(x0, w, F)=63 // ”")f;r““(f "gcos"’)Jr”W“?S;g“’ o cos$ — oo |dS(x). (2.6)
7, r X402+ 05 —2000c0s9) o sind

Applying (2.2) over the wall and requiring the zero-velocity boundary condition,
we find

L(xo, f, P)+ F(x0, fP, WF) — uD(xo, u’, F) =0, (2.7)

where the point xq lies on W. Applying (2.2) over the particle surface and using the
rigid-body-motion boundary condition, we find

S (x0, f. P)+ L(x0, f*, WF) — uD(x0, u”, F) = —8mu[V + £ X (xo — x.) —u”],
(2.8)

where the point xo lies on P. Finally applying (2.2) over the film surface and
noting that the principal value of the double-layer potential is identically zero due to
vanishing of the kernel, 7}, we find

L(xo, f, P)+ F(x0, [P, WF) + dnpu®(xo) = 0, (2.9)

where the point x( lies on F. The last three equations provide us with a system of
nine scalar equations for the three components of the traction over the particle, the
three components of the disturbance traction over the wall, the normal component
of the traction over the film surface, and the two tangential components of the
disturbance velocity over the film surface. This three-dimensional problem presents
us with significant numerical challenges concerning the discretization of the three
surfaces bounding the flow and the accurate evaluation of the singular boundary
integrals.

A key observation is that, because the free-surface is assumed to be virtually flat,
the boundaries of the flow, but not the flow itself, are axially symmetric with respect to
the x-axis. This geometrical property allows us to simplify the problem by expressing
the cylindrical polar components of the left- and right-hand sides of (2.7)—(2.9) in
Fourier series with respect to the meridional angle, ¢, defined such that y=o cos¢
and z=o0 sing. Since we are interested in a particle that is freely convected in the
film flow, we set V,, V., £2,, and £2, to zero, and obtain

V+82x(x—x)—u”=—8,0cospe, + W(x)cospe, —W(x) singpe,, (2.10)
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where e,, e,, e,, are unit vectors, W(x) =V, + £, ¥ —u](x), and ¥ =x — x.. Motivated
by this form, we express the velocity as

u="7,cospe,+ 7, cospe, — 7, singe,, (2.11)
and the boundary traction as
f=Z cospe. +F,cospe, —F,singe,, (2.12)

where the coefficients ¥, and %, are functions of x and o. The y component of the
force and the z component of the torque exerted on the particle are given by

Fy=n/(/f(,+%)adz, Tz=n/()~c(97(,+97¢)—097x)0dl, (2.13)
C C

where C is the particle contour in the ¢ =0 azimuthal plane consisting of half the
(x, y)-plane, and [ is the arclength along C. All other components of the force and
torque are zero.

Substituting (2.12) in the x component of the single-layer potential and collecting
similar terms, we find

2n
F(x9) =/ (F:cosp Gy +(F, COSZ(/J + 7, sin’ ©) Gy
cJo
+(Fo—F,) sing cose G,,)dpo dl

= COS ¢ /(Wxxg'*x +VF o+ VT ,)dl, (2.14)
c

where ¥,; are derived kernels. Working in a similar fashion with the other
components, we find

yx Cos (p()(wxxyx + l1’)((797(7 + lpxtpfgjw)
So | (x0) = / oS Po(Vor T x + ¥oo o + WsuF ) | dl. (2.15)
y‘ﬂ ¢ _Sin(p()(lpqoxgjx + ‘Il(paya + l,[/(p(pfw)

Straightforward algebra yields the 3 x 3 kernel matrix

I+ 3255 X(o I31 — 09I 1)
Yoy (X0, X) =0 |X(0 I3 — 005 31) I+ (02 +03) I —000 (I35 + F31)
$0(F30—In) Jw—In+oi(In—In)—ooy (I3 —I33)

xoo(I 3 — F3)
F10—I1+ 0 (F30—I3) , (2.16)
x0(I30—In) 12 +000(I31 — F33)

where
y _/2" cos" wdw 4w /“/2 (2cosw—1)"
" [)?2+02+a()2—2aaocosa)}m/2 (dooo)"? Jo  (1—w?cos?w)/2
(2.17)

and w? =400/[%* + (0 + 00)?]. These integrals may be expressed in terms of complete
elliptic integrals of the first and second kind, which may be evaluated efficiently either
by library functions or by iterative methods.
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Next, we substitute (2.11) in the double-layer potential (2.6) and work in a similar
fashion to obtain

D, cos@o(Ky?V 'y + KoV o + Kip?'y)
Dy | (x0) = / cos 9o(Kox Vs + Koo Vo + Ko ?Vy) | dl. (2.18)
7, € | —singo(Kpx ¥ s + Kpo Vo + Ky ')
Straightforward algebra yields the 3 x 3 kernel matrix
2275 X(o Is1—00I5)

Kos(x0,x) =60 % |0 Iss—00I51) (02 +07) Is2—000(Is51+I53)
X0 (Iso—Is) 0XIsg—Is2)+00(Is3—Is1)
x00(Fs52 —I50)
00o(Iss— Is1) —05(Is2— Is0) | - (2.19)
o0o(Is1 —Is3)

Substituting these expressions in (2.2), we derive an integral representation for the
Fourier coefficients,

1 1
1200 =g | Watro ) Fyrdier =g [ g, FRdix)
+ L Kas(xo, x) 7 2(x)dl(x), (2.20)
8 Je,

where the point x, lies inside the film and § runs over o and ¢. Substituting in (2.7),
we obtain the one-dimensional integral equation

/C Vop(o,3) Fp(0) A1)+ [ (o x) 7))

Cwr
— U / Kos(x0, x) 7" P(x)dl(x) =0, (2.21)
Cr

where the point x lies on W. Substituting in (2.8), we obtain

/%ﬁ(xo,x)ﬁ",g(x)dl(x)—l-/ lllaﬂ(xo,x)g"g(x)dl(x)
Cr c

— MK / Ka&(xo’ x) V(SD(x) dl(x) = _87”’('(_91 <] 801)( + W(xO) 80((7 + W(xO) 80{(0)7
Cr
(2.22)
where the point x lies on P. Finally substituting in (2.9), we find

/ Wop(x0, X) F g(x)dl(x) +/ Wyp(xo0, x)ﬁ"ﬂD(x)dl(x) +4nu? P(x0) =0, (2.23)
Cp Cwr

where the point x( lies on the free-surface, F. The boundary conditions require
FP2=0,7"=0and 77 =0 over F.

The solution for the x component of the disturbance traction, which is equal to the
total traction over the free surface, can be used to deduce the surface deformation to
leading order with respect to the Bond number, Bo=uU,/y. If the free-surface
is described as x=h[l14+ Bo¢(y,z)]=h[1+ Bo cosp ®(c)], then a perturbation
expansion with respect to Bo shows that, to zeroth order, f, ~ —uUh V>¢, where ¢
and @ are dimensionless functions and V2 is the two-dimensional Laplacian written
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with respect to y and z. Making substitutions, we derive the inhomogeneous Bessel-
like ordinary differential equation

1d/ do\ @ d[ldo®)\ 7,
U(i(f(add>_(fz_dd<d do >_ wUh’ (2.24)

where the right-hand side is known in numerical form. A similar approach has been
pursued by previous authors to compute the small deformation of the interface
between viscous fluids due to a perturbation (e.g. Aderogba & Blake 1978).

To solve the integral equations, we divide the boundary contours in the ¢ =0
meridional plane into straight elements over the wall and free-surface and circular
elements over the particle, and approximate the Fourier coefficients by constant
functions over each element. For better accuracy, the elements are concentrated near
the axis of symmetry so that their length increases geometrically with respect to
arclength, as shown in figure 2(a). The ratio of the sizes of the mid-point element
and end-point element over the particle was set to 10; the element stretch ratio on
the wall and free-surface elements was then determined so that particle, wall, and
surface elements adjacent to the axis of revolution have equal lengths. The wall and
free-surface contours were truncated at a radial distance equal to 10k. Applying point
collocation at the mid-point of each element, we derive a system of linear equations
for the unknown solution vector:

[(97)()1’ (55?) (97?)17{(9;0)1’ (grlr))w (A/(I;‘))F“g;‘ﬂ)lj (g—;(?)w (/Vglﬂ))F]’ (2.25)

where the vector block (&,)p contains the x component of the traction over all
wall elements; the rest of the blocks are defined in similar ways. For a freely
suspended particle, the translational and angular velocities V, and §2, are appended
to the vector of unknowns, and two more equations are introduced expressing the
vanishing of the force and torque, F, and 7. The influence coefficients over the
non-singular elements are computed by the six-point Gauss—Legendre quadrature.
The diagonal components of the dimensionless single-layer kernel, ¥,,, exhibit a
logarithmic singularity as the azimuthal angle of the integration point, 6, tends to the
azimuthal angle of the evaluation point, 6y, ¥\, ~ —2log |0 — 6|, ¥,, ~ —2log |6 — 6|,
¥,, ~ —4log |6 — 6. These singularities are subtracted out and integrated analytically
following the numerical quadrature. The solution of the ordinary differential equation
(2.24) was found by a standard finite volume method subject to a regularity condition
at the axis and the condition of zero slope at the truncated end of the wall contour.

w

3. Results and discussion

Figure 2(b—d) shows the distribution of the traction along the particle contour,
the distribution of the disturbance traction along the wall, and the distribution
of the disturbance traction and velocity along the free-surface for a/h =0.25 and
x./h=0.30. The traction coefficients have been scaled by uU,/h, and the velocity
coefficients have been scaled by U,. The solid lines representing the x Fourier
coefficient of the traction tend to zero at the axis of symmetry in all graphs, while
the corresponding o and ¢ coefficients of the traction and velocity tend to common
values. This ensures that the solution is single valued at the x-axis. The results show
that the perturbation traction decays much faster than the perturbation velocity over
the free-surface. Figure 2(e) illustrates the disturbance velocity vector field over the
free-surface. When the y velocity of the Nusselt flow is added to this pattern, we obtain
an overwhelming unidirectional surface flow. Figure 2( f) illustrates the deformation
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FIGURE 2. (a) Sample boundary element grid for a/h =0.25 and x./h =0.30 showing the high
density near the axis of revolution. (b) Distribution of the scaled particle traction coefficients
F . (solid line), # ; (dashed line), # , (dotted line), and (c) distribution of the scaled disturbance
wall traction coefficients # 2 (solid line), #2 (dashed line), #[ (dotted line), plotted with
respect to arclength, s, measured from the axis of revolution. (d) Distribution of the scaled
surface traction coefficient 1572 (solid line), and velocity coefficients 7"2 (dashed line), 72
(dotted line), plotted with respect to arclength measured from the axis of symmetry. (e)
Disturbance velocity vector field over the free surface, and (e) deformed shape of the free
surface.



Motion of a spherical particle in film flow 473

xc/h 0.0564 0.10 020 030 040 050 0.60 0.70 0.80 0.90
a/h=005|V, /U 0.765(0.767) 0962 0994 0997 0998 0999 0999 0999 0.999 0.999
282 /0 0.781 (0.780) 0.965 0.995 0.999 0.999 1.000 0.999 0.999 0.995 0.962
Xxc/h 0.1691 020 030 040 050 060 070 0.80 0.825
a/h=015|V,/Ur 0.762 (0.767) 0.869 0.958 0.978 0986 0.989 0.991 0.991 0.991
282, /0 0.786 (0.780) 0.884 0.965 0.982 0.986 0.981 0.961 0.871 0.800

x/h 0275 030 040 050 060 070 0.725
a/h=025|V,/U* 0735 0.813 0920 0951 0.964 0.969 0.969

22.jw” 0.764 0.832 0921 0935 0912 0811 0.743

x/h 0375 040 0.0 0.60 0.625
a/h=035|V,/UF 0.697 0.771 0.880 0915 0.918

22. /0 0.709 0.766 0.820 0.744 0.685

x/h 0475 050 0.525
a/h=045|V,/UF 0652 0.722 0.762

22. /0 0571 0.592 0.571

TaBLE 1. Translational and angular velocities of a freely suspended particle in film flow, as
functions of the particle radius and distance of the particle centre from the wall. The entries
in parentheses are the predictions of Goldman et al. (1967) for a spherical particle suspended
in a semi-infinite simple shear flow above a plane wall.

of the free-surface computed by solving a Bessel-like equation, as discussed in
the previous section. We observe the formation of a peak and a depression upstream
and downstream of the particle centre along the y-axis. These results are useful for
quantifying the rippling of a free-surface in the flow of a suspension.

Table 1 lists the computed particle translational and angular velocities scaled,
respectively, by the fluid velocity and half the vorticity of the Nusselt profile evaluated
at the particle centre. Results are presented for several combinations of the particle
radius and particle centre position, with a margin of error of less than 40.001 in
all cases. For a/h=0.25 and x./h =0.30, computations with triplets of elements (16,
32, 32), (32, 64, 64), and (64, 128, 128), around the particle, wall, and free-surface
contour, yielded, respectively, Vy/ Uy =0.8141, 0.8130, 0.8128, and 282, /0w =0.8342,
0.8326, 0.8322. These data demonstrate the fast convergence and good accuracy of
the numerical method even with a moderate number of elements. All results reported
in the table were obtained with the finest grid. In all cases, the reduced translational
velocity is less than unity, reflecting a lag in the particle velocity with respect to the
pure fluid velocity due to the finite particle size. For a fixed particle radius, V,/UY
increases monotonically toward the value of unity as the particle centre moves away
from the wall and toward the free-surface. In contrast, the reduced angular velocity
282, /w? increases up to a maximum, and then declines toward a finite limit as the
particle centre approaches the free-surface where the vorticity of the unperturbed flow
vanishes. For a fixed particle centre, both reduced velocities decline as the particle
radius is increased. The predictions of Goldman, Cox & Brenner (1967) for a spherical
particle suspended in a semi-infinite simple shear flow are enclosed by parentheses
in table 1. These theoretical estimates are in excellent agreement with the numerical
results for small particles that are close enough to the wall.

Next, we consider flow past an immobilized particle, set the particle translational
and angular velocities equal to zero, and compute the force and torque exerted on the
particle as part of the solution. Figure 3(a—c) shows the distribution of the traction
over the particle contour, the distribution of the disturbance traction over the wall,
and the distribution of the disturbance traction and velocity along the surface for
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FiGURE 3. Flow past an immobilized particle of radius a/h=0.35 placed at a distance
x./a=1.0453 above a plane wall. Frames (a—e) are the counterparts of those shown in fig-
ure 2(b—f). (f) Total velocity vector field for a large particle with a/h=0.475 and
x./a=1.0453.

a/h=0.35 and x./a=1.0453. The traction coefficients have been scaled by uU;/h,
and the velocity coefficients have been scaled by U;. Comparing these graphs with
their counterparts for a freely suspended particle shown in figure 2(b—d), we find
significant differences over the particle surface and wall, and a similar behavior over
the free-surface. The surface velocity vector field and surface deformation illustrated
in figure 3(d, e) are generally similar to those induced by a freely suspended particle,
though the surface deformation is much more pronounced. Figure 3(f) shows the
total velocity vector field for a large particle with a/h=0.475 and x./a =1.0453. In
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alh 0.0 0.05 0.15 0.25 0.35 0.40 0.45 0.475
F,/(6nuax.S) 1.668 1.710 1.838 2.039 2.275 2.378 2.458 2.492
T, /(4nua’Ss) 0.947 0.947 0.955 0.953 0.850 0.708 0.472 0.319

TaBLE 2. Force and torque exerted on a spherical particle held stationary at a distance
x./a=1.0453 above the inclined wall; S is the shear rate of the unidirectional Nusselt flow
evaluated at the particle centre.

this case, we observe a region of expansion as the fluid negotiates the nearby upper
particle surface.

Table 2 lists the force and torque exerted on an immobilized particle that nearly
touches the wall. The theoretical predictions of Goldman et al. (1967) for a spherical
particle held stationary in semi-infinite simple shear flow, listed under the zero radius
header, are in excellent agreement with the numerical results for small particles. As
the particle becomes larger, the force coefficient increases monotonically, while the
torque coefficient reaches a maximum and then decreases toward a non-zero limit.
The results presented in table 2 are useful for estimating the critical adhesion force
and torque required for a particle to remain attached to the wall.

This research was supported by a grant provided by the National Science
Foundation.
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